POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name Biophysics [S1IBio1E>Biof]

Course			
Field of study Biomedical Engineering		Year/Semester 2/4	
Area of study (specialization) –		Profile of study general academic	
Level of study first-cycle		Course offered in English	
Form of study full-time		Requirements compulsory	
Number of hours			
Lecture 30	Laboratory classe 0		Other D
Tutorials 15	Projects/seminars 0	5	
Number of credit points 4,00			
Coordinators dr inż. Dawid Kucharski dawid.kucharski@put.poznan.pl		Lecturers	

Prerequisites

Basic knowledge of physics, mathematics. Ability to physically describe a biological system.

Course objective

Getting to know the fundamentals of biophysics, physics of a biological cells and solving the logical biophysical tasks.

Course-related learning outcomes

Knowledge:

A student knows the fundamentals of mathematics and the ability to use it for a biophysical description of a living system. Based on physical laws and theory, a student should do an interpretation of a selected human internal organs functions. A student should know a selected method of structure cells and a tissues investigation, together with physiological processes. A student has an elementary knowledge about chemistry and can adapt it for a biological systems description.

Skills:

A student can: observe physical phenomena inside the human body; describe biophysical problems and

can merge then into technical issues; do the measurements and compute the biophysical quantities.

Social competences:

A student understands a whole life learning necessity.

A student can collaborate with others.

A student knows the necessity of an interdisciplinary way for the bioengineering problems.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

course final exam; written (4 questions) and classes exam (4 tasks to solve). In both exams, the condition to receive a positive evaluation is to obtain at least 50% of the maximum number of points.

Programme content

Lectures scope:

Structure of matter, Elements of quantum physics, Biological structures. Fundamentals of biothermodynamics, Physical properties of a cell membrane. Molecular and ionic transport. Diffusion and osmosis. Information transport through a cell membrane. External-field-body interaction. Radiation-matter interaction. Biophysics of the senses. Elements of biomechanics of muscles and biological liquids. Classes scope: computational tasks (about lectures scope)

Course topics

none

Teaching methods

1. Lectures: oral presentation with illustrated examples on a blackboard, calculations.

2. Classes: tasks calculations.

Bibliography

Basic:

1. F. Jaroszyk, Biofizyka, Wydawnictwo Lekarskie PZWL, Warszawa 2001.

2. Z. Jóźwiak, G.Bartosz (red.), Biofizyka. Wybrane zagadnienia wraz z ćwiczeniami, PWN, Warszawa 2003.

Additional:

I. Herman, Physics of the Human Body, Springer Science & Business Media, Berlin, Heidelberg (2007).
M. Ashrafuzzaman and J. A. Tuszynski, Membrane Biophysics, Springer Science & Business Media (2012).

Breakdown of average student's workload

	Hours	ECTS
Total workload	100	4,00
Classes requiring direct contact with the teacher	47	2,00
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	53	2,00